## Guest post: A Math Circle that’s Breaking the Mold

*This is a guest post by P.J. Karafiol. P.J. has been in high school education for 20 years, the last fifteen in Chicago Public Schools as a math teacher and department chair, curriculum coordinator, and, this year, Assistant Principal/Head of High School. P.J. is the head author for the ARML competition, the founder of Math Circles of Chicago, and until last year a dedicated math team coach. He lives with his wife, three children, and two dogs in Chicago, about a half-mile from the public high school he attended.*

Dear Cathy,

I loved your post asking how we can make math enrichment less elitist, and I wanted to let you (and your readers) know about what we’re doing about that here in Chicago. In 2010, inspired in part by your post about why math contests kind of suck, my department (at Walter Payton College Prep) and I decided to start a math circle in Chicago. We rounded up some of our friends from the city and suburbs, used part of an award from the Intel Foundation as seed money, and launched the Payton Citywide Math Circle. We had three major tenets: that students should be solving challenging problems, not listening to lectures; that the courses should be open to anyone who wanted to join; and that the program should be 100% free.

We’ve grown tremendously in the five years since our first Saturday afternoon session. Renamed Math Circles of Chicago, we now run math enrichment programs after school and on Saturdays at five locations around the city, including some of the city’s poorest neighborhoods. In 2011 we partnered with the University of Illinois at Chicago, and we’ve been excited to welcome professors from all five of Chicago’s major universities as teachers and partners. We currently serve 500 students in grades 5-12 (the vast majority in grades 5-8), and we provide them with opportunities they don’t get anywhere else: above all, the opportunity to do challenging mathematics in an environment of collaborative exploration. And, since 2013, we’ve sponsored Chicago’s only (and, to my knowledge, the nation’s second) youth math research symposium,* *QED. This year, over 150 students in grades 5-12 brought original math research projects to the symposium, and we’ve trained teachers across the city in how to support math research in their own classes.

You’re absolutely right that we need to make opportunities like this available to all students. When I was in fifth grade, I told my father I “hated math”. He responded by taking me to a local (university) bookstore to let me peruse the wall of yellow Springer books. After I opened and closed my third incomprehensible tome, he explained that __mathematics__ was what was in those books; the subject I hated in school was arithmetic. But I was an only child; many of our students tell us that what they do at math circle–graph theory, number theory, geometry explorations, etc.–is nothing like what is taught in their math classes. Frankly, I wouldn’t call what we do math “enrichment” at all: for many of the kids we serve, math circle is the __only__ exposure they get to what I (or my father) would call real mathematics.

Researchers such as Mary Kay Stein would agree with our assessment. Stein divides math tasks into four levels of complexity, from “memorization” (level 1) to following procedures (levels 2 and 3, depending on whether the procedures are connected to genuine mathematical content). She reserves the term “doing mathematics” for the highest level of her framework, when students are solving problems for which they haven’t yet learned a procedure. (You can find a summary of her framework here.) One area where we’re growing is that we’re trying to engage even more teachers from Chicago Public Schools–not just our founders–in teaching problem-based sessions, in the expectation that those experiences will change what they do in the classroom for their “regular” students, as those experiences did for us.

Although we’ve grown and evolved, we’ve never strayed from our initial tenets. The Intel money ran out long ago, but we’re entirely donor-supported; our families donate the majority of our annual operating costs on an entirely voluntary basis. (We call it the “NPR Model”: if you like what you hear and think it’s valuable, please contribute what you can.) Students still come from all over the city and still spend their time solving and discussing mathematics, generating questions as well as answering them–not listening to lectures or doing practice worksheets. And our only admission requirement is the same as it was in 2010: students have to write, by hand (no typing allowed!), a one-page essay about why they want to do math on Saturdays (or after school). We have a waiting list in the dozens for each of our three largest sites.

If your readers want to learn more, or to help out, I’d encourage them to visit our website at mathcirclesofchicago.org, or to email our executive director, Doug O’Roark, at doug (at) mathcirclesofchicago (dot) org. We can always use donations; the program costs us about $20 per student per Saturday, and many of our families can’t afford to give nearly that much. We also support other noncompetitive math opportunities for our students: in addition to telling them about programs like the University of Chicago’s Young Scholars Program (now as of 2015 our official partner), HCSSiM, MITES, and PROMYS, we subsidize travel and other expenses for students whose financial aid awards are insufficient.

We’re really excited about the work we’re doing in Chicago. We’ve shown that math circles can exist (and thrive) outside of traditional university environments, and that placing circles in schools and community centers–and partnering with local community organizations–brings more students, and a more diverse group of students. Our programs are currently growing faster than our fundraising–which is a great problem to have–so we really could use any support your readers want to give. We’d also welcome visitors; we’re excited to help people see real kids do real math.

After I left the bookstore that afternoon 34 years ago, I did come to love math–a love supported not just by math contests, but by wonderful opportunities to learn and do mathematics at Dr. Ross’s program at OSU and at HCSSiM, where you and I met in 1987. Without those programs, I would be a different person today. So thank you for drawing attention to this critical issue.

Sincerely,

P.J. Karafiol

Founder and President

Math Circles of Chicago

There has been a lot of good discussion about making interesting math available to everyone. I have decided after some research that less affluent Americans may be better at math than we think..

The Atlantic article gives ratios of 3 to 1 in S Korea, affluent math whizzes to less affluent, but only 10% of S Korean children live in poverty, a ratio of 9 to 1. If the article is correct, a poor S Korean is 3 times more likely to be good at math than her affluent friend. A poor Canadian child is 50% more likely than his affluent counterpart given the reported ratios and poverty rate for Canada.

I believe that, realizing that showing an ability in math could force them to spend Saturdays at math camp, poor Americans simply hide their abilities.

Given the relationship, shown in the Atlantic piece, between affluence and lack of math skills internationally, it seems that the programs need to be more elitist. Rich kids, at least in Canada and S. Korea, have some catching up to do.

LikeLike