## GRAPH Course

Go back

In French it's called Parcours en largeur. You will pick a vertex, mark its neighbors until each vertex's neighbors are marked.

Algorithm

• randomly pick a starting vertex
• add your vertex's neighbors in a list $S$
• then until you have a vertex in the list $S$
• pick the first vertex
• mark it, and remove it from $S$
• add its neighbors in $S$, if they aren't already inside, or already marked

Complexity: $O(|V|+|E|)$.

## Example ¶

Use the Breadth-first search on this graph. I'm starting from $\text{h}$.

• h
• $n(\text{h}) = \text{i}$
• $\text{list} = \text{( i )}$
• i
• $n(\text{i}) = \text{j, g}$
• $\text{list} = \text{( j, g )}$
• j
• $n(\text{j}) = \text{e}$
• $\text{list} = \text{( g, e )}$
• g
• $n(\text{j}) = \text{f, d}$
• $\text{list} = \text{( e, f, d )}$
• e
• $n(\text{e}) = \text{b, a}$
• $\text{list} = \text{( f, d, b, a )}$
• f
• $\text{list} = \text{( d, b, b, a )}$
• d
• $n(\text{d}) = \text{k, c}$
• $\text{list} = \text{( b, a, k, c )}$
• b
• $\text{list} = \text{( a, k, c )}$
• a
• $\text{list} = \text{( k, c )}$
• k
• $\text{list} = \text{( c )}$
• c
• $\text{list} = \text{empty}$

So the result is $h-i-j-g-e-f-d-b-a-k-c$.